
Simulating Sensor Networks in NS-2

Ian Downard
Naval Research Laboratory

Code 5523
4555 Overlook Ave

Washington DC, 20375-5337
downard@itd.nrl.navy.mil

No Institute Given

Abstract. Optimizing sensor networks involves addressing a wide range
of issues steaming from limited energy reserves, computation power, com-
munication capabilities, and self-managing sensor nodes. The ns-2 simu-
lation environment is a flexible tool for network engineers to investigate
how various protocols perform with different configurations and topolo-
gies. This paper describes how we extended the ns-2 framework to include
support for sensor networks, and illustrates their utility with an exper-
iment examining Mobile Ad Hoc Network (MANET) routing within a
dynamic sensor network.

1 Introduction

Recent advances in processing, storage, and communication technologies have
advanced the capabilities of small-scale and cost-effective sensor systems to sup-
port numerous applications. Sensor networks that detect hazardous chemical or
biological agents in complex urban infrastructures could be a killer application
for homeland security. Much of the research in sensor networks is funded for
military tasks, but applications such as forest fire detection and rush-hour traf-
fic monitoring exemplify the versatility envisioned for this rapidly expanding
technology.

Many successful sensor applications have been deployed in very special-
ized networks, such as UC-Berkeley’s Smart Dust [1], MIT’s µ-Adaptive Multi-
domain Power aware Sensors [2], and UCLA’s Wireless Integrated Sensor Net-
works [3]. But the wide spread deployment of wireless networks has generated
more possibilities for mobile ad hoc networks of self-governing nodes that can
serve numerous sensor applications without manual reconfiguration.

While operating in this context, we define a sensor network as an autonomous,
multi-hop, wireless network with nondeterministic routes over a set of possibly
heterogeneous physical layers. In other words, routing will occur throughout the
network at nodes configured in ad hoc mode. Our long-term objective is to evalu-
ate how well current routing layer standards support the requirements of various
other layers in these sensor networks. We are including the ns-2 simulation en-
vironment in these evaluations.

The primary purpose of this project is to establish a foundation in ns-2 for
simulating sensor networks. This foundation, illustrated in Figure 1, consists of
dual-homed sensor nodes that are tapped into an 802.11 channel for communi-
cating with other network stations and into a phenomenon channel for detecting
some physical phenomenon. This work is a small contribution that should ben-
efit sensor network research where simulation is appropriate. It is an effort to
aid the analysis of various sensor network configurations under the demands of
specific sensor applications.

The paper begins with an overview of the ns-2 simulation environment, fol-
lowed by a description of our extensions to ns-2 and guidelines for using them in
simulations. We conclude with a section to illustrate a sensor network simulation
and a final section to list relevant areas for future research.

phenom
channel

data
channel

(802.11)

Sensor
nodephenom

channel
data

channel

(802.11)

Sensor
node

Fig. 1. This is the foundation of the sensor network model used in ns-2

2 Related Work

Mochocki and Madey [4] administrate a project whose objective includes build-
ing a flexible simulation tool specifically for sensor networks. Their on-going
research emphasizes heterogeneity throughout a simulation environment based
on the SWARM [6] software package. They cater to simulations of MANET
nodes, each with unique storage, processing, and sensing capabilities in order
to investigate details about energy conservation, routing, medium access, and
application protocols.

Park, Savvides, Srivastava [5] developed extensions to ns-2 for modeling sen-
sor networks with an emphasis on sophisticated modeling of energy consumption
and emulation (i.e. interfacing with real world sensor nodes). Unfortunately, their
work has not been updated to support subsequent releases of ns-2 since October,
2000.

3 NS-2 Overview

The ns-2 simulation environment [7] offers great flexibility in investigating the
characteristics of sensor networks because it already contains flexible models for
energy constrained wireless ad hoc networks. In the ns-2 environment, a sensor
network can be built with many of the same set of protocols and characteristics
as those available in the real world. The mobile networking environment in ns-2
includes support for each of the paradigms and protocols shown in Figure 2.
The wireless model also includes support for node movements and energy con-
straints. By leveraging the existing mobile networking infrastructure, we added
the capability to simulate sensor networks.

Application Layer

CBR
FTP

TELNET

Transport Layer

TCP
UDP

Network Layer Data Link Layer

802.11
TDMA
SMAC

Physical Layer

Radio propagation
models with r^-4

attenuation:
Free Space,

Two Ray Ground,
Shadowing

Omni-directional
antenna model
with unity gain

DSDV
DSR

TORA

AODV
OLSR

Fig. 2. These are some of the paradigms and protocols available for wireless networking
in ns-2. Some protocols like OLSR [8] and SMAC [9] have not yet been incorporated into
USC’s ns-2 distributions [7], but they can be retrieved from their respective developers’
sites

4 The Extended NS-2 Architecture

4.1 Sensor Network Extensions

The only fundamental aspect of sensor networks missing in ns-2 was the notion
of a phenomenon such as chemical clouds or moving vehicles that could trigger
nearby sensors through a channel such as air quality or ground vibrations. Once
a sensor detects the “ping” of a phenomenon in that channel, the sensor acts
according to the sensor application defined by the ns-2 user. This application
defines how a sensor will react once it detects its target phenomenon. For exam-
ple, a sensor may periodically send a report to some data collection point as long
as it continues to detect the phenomenon, or it may do something more sophis-
ticated, such as collaborate with neighboring sensor nodes to more accurately
characterize the phenomenon before alerting any outside observer of a supposed
occurrence. For each sensor network there is a unique sensor application to ac-
complish phenomena detection, such as surveillance, environmental monitoring,

etc. With ns-2, we have provided the facility to invoke sensor applications by
phenomena. With these sensor applications, we can study how the underlying
network infrastructure performs under various constraints.

We modeled the presence of phenomena in ns-2 with broadcast packets trans-
mitted through a designated channel. The range of phenomena is the set of nodes
that can receive the PHENOM broadcast packets in that channel1. This pattern
will follow whichever radio propagation model (free space, two ray ground, or
shadowing) included with the phenomenon node’s configuration. These prop-
agation models roughly cover a circle, but other shapes could be achieved by
varying the range of PHENOM broadcast packets and creatively moving a set
of phenomenon nodes emanating the same type of phenomenon.

Emanating PHENOM broadcast packets is accomplished by the “PHENOM
routing protocol”2, which simply broadcasts PHENOM packets with a certain
configurable pulse rate. When a PHENOM packet is received by a node listening
on the phenomenon channel, a receive event is passed to that node’s sensor
application.

4.2 Additions to NS-2

Our sensor network simulations have phenomenon nodes that trigger sensor
nodes, but the traffic sensor nodes generate once they detect phenomena depends
on the function of the sensor network. For example, sensor networks designed for
energy efficient target tracking [10] would generate more sensor-to-sensor traffic
than a sensor network designed to provide an outside observer with raw sen-
sor data. This function is defined by the sensor application which is intended
to be customized according to the traffic properties associated with the sensor
network being simulated. The objects and functions we have just described are
implemented in the following files:

phenom/phenom.cc,h This file implements the PHENOM routing protocol used
for emanating phenomena. It includes parameters for the pulse rate and the phe-
nomenon type (Carbon Monoxide, heavy seismic activity, light seismic activity,
sound, or generic). These types are just names that can be used to identify mul-
tiple sources of phenomena in trace files. The pulse rate is the only parameter
that actually controls how a phenomenon emanates.

1 This reflects the range of sensitivity of the sensors. For example, PHENOM broad-
casts with a long range would simulate highly sensitive sensors. The sensitivity of a
single sensor can be controlled by setting the receive and carrier sense thresholds in
defined in mac/wireless-phy.cc.

2 This functionality best fit into ns-2’s existing ad hoc wireless networking infrastruc-
ture as a routing protocol, even though it does not actually route at all. The MAC
layer it operates above must be specified in the phenomenon node’s configuration.
Although real-world phenomena can interfere in a variety of ways, we ignore this
aspect and use the basic “Mac” class, which seems to prevent channel contention.

sensornets-NRL/sensoragent.cc,h The ns manual [11] describes agents as
“endpoints where network-layer packets are constructed or consumed”. Sensor
nodes use a sensor agent attached to the phenomenon channel for consuming
PHENOM packets, and a UDP or TCP agent attached to the wireless network
channel for constructing packets sent down from the sensor application. Sensor
agents act as a conduit through which PHENOM packets are received and pro-
cessed by sensor applications. The sensor agent does not actually look at the con-
tents of the PHENOM packet, it simply marks the packet as received and passes
it to the sensor application. This agent is implemented in sensoragent.cc.

sensornets-NRL/sensorapp.cc,h The sensor application defined in this file
utilizes node color and generates sensor reports to show when the correspond-
ing sensor node detects phenomenon3. Specifically, when the node is receiving
PHENOM packets, this application changes the node color to red, activates an
“alarm” public variable, and sends a sensor report of MESG SIZE bytes to the
sink node of a UDP (or TCP) connection once per TRANSMIT FREQ seconds.
When the node has not received a PHENOM packet in the timeout period spec-
ified by SILENT PHENOMENON, then the node color changes back to green.
If node color is desired to illustrate energy levels instead of sensor alarm status,
then that aspect of the application can be disabled with DISABLE COLORS.

A visualization of this sensor application is shown in Figure 3.

sensornets-NRL/phenom packet.h This file defines the structure of PHENOM
packets. The five phenomenon types defined here (CO, HEAVY GEO, LIGHT GEO,
SOUND, and TEST PHENOMENON) correspond to Carbon Monoxide, heavy
seismic activity, light seismic activity, audible sound, and some generic phe-
nomenon. These types are most useful for simulations involving multiple phe-
nomenon nodes, in order to easily distinguish who a given sensor node is detect-
ing by looking at the ns-2 trace file.

4.3 Modifications to NS-2

Figure 4 shows where our extensions are arranged within the ns-2 framework.
The major additions and modifications are explained below. Section 4.4 shows
how our extensions fit into ns-2’s class hierarchy.

trace/cmu-trace.cc,h The CMUTrace class is used to print important parts of
a packet to the simulation’s trace file. Since we introduced a new packet type for
phenomena, we had to describe the corresponding packet format in this class.

3 The four environment variables that can be used to customize this application
are SILENT PHENOMENON, DISABLE COLORS, MESG SIZE, and TRANS-
MIT FREQ.

46

45

44

43

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19
18

17

16

15
14

13

12

11

10
9

87

6

5

4

3

2

1

0

Fig. 3. Visualization of a simulated sensor network with 25 stationary sensor nodes, 20
mobile phenom nodes simulating a gas cloud, and one stationary data collection point.
The red sensor nodes detect the phenomenon, the green ones do not. The phenomenon
nodes are large and blue, and the data collection point is the black node in the far
upper-right corner

ns-2.26/

trace/

mac/

tcl/lib/

queue/

common/

ns-lib.tcl

ns-mobilenode.tcl

ns-namsupp.tcl

mac.cc

wireless-phy.cc,h

packet.h

cmu-trace.cc,h

priqueue.cc

phenom/

sensornets-NRL/

sensoragent.cc,h

phenom.cc,h

phenom_packet.h

sensorapp.cc,h

Fig. 4. This figure illustrates which files in the ns-2 framework were modified (see left
side) or added (see right side)

tcl/lib/ns-lib.tcl This component of the infrastructure interprets node con-
figurations specified in the ns-2 simulation script. Our extensions introduced two
new node types, the sensor node and the phenomenon node. Therefore, we added
some arguments in the node-config function to accommodate them.

tcl/lib/ns-mobilenode.tcl In ns-2’s virtual world, we are using its existing
capacity for multi-channel wireless networking as a means to emanate phenom-
ena of various kinds. By using a dedicated channel for phenomena, we can sim-
ulate the unique physical medium that they occupy in the real world. Thus, as
shown in Figure 1, sensor nodes will need to have two interfaces, one to the
802.11 channel and one to the PHENOM channel. We implemented this kind of
“multi-homed” capability in ns-mobilnode.tcl.

common/packet.h Each packet in ns-2 is associated with a unique type that
associates it with the protocol that it belongs to, such as TCP, ARP, AODV,
FTP, etc. Since we created a new protocol for emanating phenomena, we defined
it’s corresponding packet type in the packet.h header file.

mac/wireless-phy.cc Ns-2 contains an energy model for wireless nodes that
can be used to investigate the benefits of various energy conservation techniques,
such as node sleeping or utilizing optimal network densities. The model includes
attributes for specifying the power requirements of transmitting packets, re-
ceiving packets, or idly standing by during times of network inactivity. Sens-
ing phenomena is a process that may consume power at another rate, so it is
important to consider this where sensor network simulations are concerned. In
mac/wireless-phy.cc, we have included the capability of specifying the amount
of power consumed by nodes while sensing phenomena.

Other small modifications were made to mac/mac.cc, tcl/lib/ns-namsupp.tcl,
and queue/priqueue.cc in order to facilitate the second interface to the phe-
nomenon channel on sensor nodes, to fix a bug in ns-2’s node coloring procedure,
and to include the new PHENOM packet type into the ns-2 framework.

4.4 The Extended NS-2 Class Hierarchy

The Doxygen documentation system [12] was used to generate Figures 5, 6, and
7 that illustrate how our extensions fit into ns-2’s class hierarchy. Dotted lines
show where a class is using the methods and members of another class. Solid
lines show where a class is inheriting the methods and members from another
class.

5 Capabilities, Guidelines, and Caveats.

This section describes the capabilities of our sensor network extensions, gives
some guidelines for configuring simulations, and attempts to explain some areas

PHENOM

PHENOMHelloTimer

agent

Agent

Application

agent_

Connector

Trace Queue< T >

NsObject

target_
drop_

Handler

Event

handler_

QueueHandler

EventTrace

et_

BaseTrace

pt_

app_

Process target_

ns_addr_t

here_
dst_

OldValue

oldValueList_

next_

logtarget

htimer

intr

next_
prev_

Packet

PriQueue

ifqueue

DropTail

queue_

QueueElem< T >

tail_
head_

next_

T

data_

PacketQueue

q_

pq_

iter
tail_

head_

next_
free_

qh_

Fig. 5. Collaboration diagram for the PHENOM class

SensorAgent

SensorApp

sensor_agent_ptr

Agent

Application

agent_

Connector

NsObject

target_
drop_

Handler

TimerHandler

Event

handler_

EventTrace

et_

BaseTrace

app_

Process target_

ns_addr_t

here_
dst_

OldValue

oldValueList_

next_

sensor_app

SilenceTimer

sensor_app_instance_

SendTimer

sensor_app_instance_ silence_timer

event_

next_
prev_

send_timer

Fig. 6. Collaboration diagram for the SensorAgent class

SensorApp

SilenceTimer

sensor_app_instance_

SensorAgent

sensor_app

SendTimer

sensor_app_instance_

Application

silence_timer

sensor_agent_ptr

send_timer

Fig. 7. Collaboration diagram for the SensorApp class

of likely confusion. In this section, we assume the reader is already familiar with
setting up mobile node simulations in ns-2. For readers who are not, the following
URLs provide background:

http://nile.wpi.edu/NS/
http://www.isi.edu/nsnam/ns/

The easiest way to create sensor network simulations is to use the script maker.pl
utility in the simulations aids directory distributed with our extensions. This
Perl script contains commonly used parameters for setting up sensor network
simulations and automatically generates the often complex ns simulation script.
The remainder of this section describes how to code a sensor network simulation
into the ns simulation script, without using the script maker.pl utility.

Setting up a sensor network in ns-2 follows the same format as mobile node
simulations. The best way to create your own simulation is to modify one of the
examples distributed with our code [13].

Places where a sensor network simulation differs from a traditional mobile
node simulation are listed below. Setting up ns , god , tracing, topography ob-
jects and starting and stopping the simulation are all the same as in traditional
mobile node simulations.

1. Configure a phenomenon channel and data channel. Phenomenon nodes
should emanate in a different channel than sensor nodes in order to avoid
contention at the physical layer. All phenomenon nodes should be configured
on the same channel, even if they are emanating different types of phenom-
ena.

set chan 1 [new $val(chan)]
set chan 2 [new $val(chan)]

2. Configure a MAC protocol for the phenomenon channel. Choose a MAC layer
to use for emanating phenomena over the phenomenon channel. Using 802.11
is not appropriate, since phenomena should be emanating without regard to
collisions or congestion control. We suggest using the basic “Mac” class in-
stead, shown as follows:

set val(mac) Mac/802 11
set val(PHENOMmac) Mac

3. Configure phenomenon nodes with the PHENOM “routing” protocol. Use
node-config, just like with mobile nodes, but specify PHENOM as the rout-
ing protocol so the phenomenon is emanated according to the methods de-
fined in phenom/phenom.cc. Also, be sure to configure in the channel and
MAC layer previously specified for phenomena broadcasts. A sample node

configuration statement is shown below.

$ns node-config \
-adhocRouting PHENOM \
-channel $chan 1 \
-llType LL \
-macType $val(PHENOMmac) \
-ifqType Queue/DropTail/PriQueue \
-ifqLen 50 \
-antType Antenna/OmniAntenna \
-phyType Phy/WirelessPhy \
-topoInstance $topo \
-agentTrace ON \
-routerTrace ON \
-macTrace ON \
-movementTrace ON \
-propType Propagation/TwoRayGround

4. Configure the Phenomenon node’s pulse rate and type. The two parameters
that can be used to customize phenomena are listed below. They are both
optional.
(a) pulserate FLOAT

– FLOAT must be a real number.
– Describes how frequently a phenomenon node broadcasts its pres-

ence.
– Defaults to 1 broadcast per second.

(b) phenomenon PATTERN
– PATTERN must be any one of the following keywords: CO, HEAVY GEO,

LIGHT GEO, SOUND, TEST PHENOMENON corresponding to
Carbon Monoxide, heavy seismic activity, light seismic activity, au-
dible sound, and some other generic phenomenon.

– This option is mostly useful for simulations involving multiple phe-
nomenon nodes, so that it is easier to distinguish who a sensor node
is detecting by looking at the NS trace file.

– Defaults to TEST PHENOMENON.
The following source code illustrates how these phenomena parameters can
be set to emanate Carbon Monoxide 10 times per second:

[$node (0) set ragent] \
pulserate .1 ;

[$node (0) set ragent] \
phenomenon CO ;

5. Configure sensor nodes. Sensor nodes must be configured with the -PHENOMchannel
attribute and the -channel attribute. PHENOMchannel must be the same as
the channel you configured the phenomenon node with. The other channel is

the channel that will be used for communicating sensor reports. Sensor node
configurations must also specify a MAC protocol for the phenomena chan-
nel and a MAC protocol (such as Mac/802 11) for the channel shared with
other wireless nodes. This is done with the -PHENOMmacType and -macType
attributes. PHENOMmacType should be the same as the macType used in PHE-
NOM nodes, and macType should be the same as the macType used in other
nodes participating in the IP network. For example:

$ns node-config \
-adhocRouting $val(rp) \
-channel $chan 2 \
-macType $val(mac) \
-PHENOMchannel $chan 1 \
-PHENOMmacType $val(PHENOMmac)

If desired, a sensor node can be configured so that a specified amount of
energy will be deducted from its energy reserve each time it receives a phe-
nomenon broadcast. To set this up, include the following parameters in the
sensor node’s node-config routine:

-energyModel EnergyModel \
-rxPower 0.175 \
-txPower 0.175 \
-sensePower 0.00000175; \
-idlePower 0.0 \
-initialEnergy 0.5

where
– rxPower .175 indicates 175mW consumed for receiving a packet of ar-

bitrary size,
– txPower .175 indicates 175mW consumed for transmitting a packet of

arbitrary size,
– sensePower .00000175 indicates 1.75µW consumed for receiving a PHE-

NOM broadcast packet, and
– initialEnergy 5 indicates a total energy reserve of 5J .

IMPORTANT CAVEAT:
Ns-2’s energy consumption model utilizes color to illustrate when a node
is about to exhaust its energy. In order to avoid confusion in the nam vi-
sualization, the node coloring that is part of the sensor application should
be disabled with the DISABLE COLORS definition in sensorapp.cc. (Remem-
ber to run make again to compile those changes into the ns-2 executable).
In addition to DISABLE COLORS, some other sensor node parameters can be
specified in sensorapp.cc. These parameters are listed below:
– SILENT PHENOMENON is the seconds of quiescence required for

a sensor to go off it’s alarming state. Example:
#define SILENT PHENOMENON .2

– DISABLE COLORS disables node color changes invoked by the sen-
sor application. This is useful when it is desired to use node color to
illustrate a node’s energy reserves. Example:
#define DISABLE COLORS FALSE

– MESG SIZE is the size (in bytes) of the messages to send to the gate-
way, or data collection point, or whatever you want to call the sink node
attached to this sensor node (over UDP, for example). Example:
#define MESG SIZE 256

– TRANSMIT FREQ is the frequency with which a sensor node trig-
gered by PHENOM packets will send a message to the the sink node
attached to this sensor node. Units are in seconds, so a message of size
MESG SIZE bytes will be transmitted to the gateway node once for every
TRANSMIT FREQ seconds in which the sensor node has received one or
more PHENOM packets. Example:
#define TRANSMIT FREQ 0.1

6. Configure non-Sensor nodes, such as data collection points, or gateways for
the sensor network. Nodes that are not sensor nodes or phenomenon nodes,
should not be configured with a PHENOMchannel, since their only interface
is to the MANET network. This is done with the -PHENOMchannel "off"
attribute, as follows:

$ns node-config \
-adhocRouting $val(rp) \
-channel $chan 2 \
-PHENOMchannel "off"

7. Attach sensor agents. Create a sensor agent for each sensor node, and attach
that agent to its respective node. Also, specify that all packets coming in
from the PHENOM channel should be received by the sensor agent. In the
following example, $i would represent the node number for the sensor node
currently being configured.

set sensor ($i) [new \
Agent/SensorAgent]

$ns attach-agent $node ($i) \
$sensor ($i)

specify the sensor agent
as the up-target for the
sensor node’s link layer
configured on the PHENOM
interface, so that the
sensor agent handles the

received PHENOM packets
instead of any other agent
attached to the node.

[$node ($i) set ll (1)] \
up-target $sensor ($i)

8. Attach a UDP agent and sensor application to each node (optional). How
the sensor nodes react once they detect their target phenomenon is a behav-
ior that should be defined in the sensor application. One such application
might involve sensor nodes alerting a data collection point via UDP with in-
formation about the phenomenon. The following example illustrates how an
application like that could be setup. Again, $i represents the node number
for the sensor node currently being configured.

set src ($i) [new Agent/UDP]
$ns attach-agent $node ($i) \

$src ($i)
$ns connect $src ($i) $sink
set app ($i) [new \

Application/SensorApp]
$app ($i) attach-agent $src ($i)

9. Start the sensor application. The sensor node can receive PHENOM pack-
ets4 as soon as the sensor agent is attached to the node. Since the sensor
agent does nothing but notify the sensor application of received phenomenon
broadcasts, the sensor node does not visibly react to PHENOM packets until
the sensor application has been attached and started. The following example
shows how to start a sensor application:

$ns at 5.0 "$app ($i) start \
$sensor ($i)"

6 Proof of Concept: MANET Routing Within a Dynamic
Sensor Network

This experiment begins to show the types of results one can achieve from sensor
network simulations in ns-2. Suppose we would like to characterize how well
4 Phenomenon nodes start emanating immediately once the simulation starts. A de-

layed start can be realized by reducing the range of phenomenon broadcasts to
such a small area that they are effectively inaudible to any sensors (unless they oc-
cupy the exact same coordinate in the grid). A phenomenon node can be turned
off this way with a command like, $ns at 6.0 {[$node ($i) set netif (0)] set

Pt 0.0001}. Pt is the range of the broadcast, and $i is the node id of the Phe-
nomenon node.

AODV scales with the size of a sensor network running the sensor application
defined at the end of section 4. We will look at networks of stationary sensors
with infinite energy placed in a grid with d units of distance between adjacent
nodes. The network size will vary between 50 and 2000 sensor nodes. We will
limit the broadcast range of 802.11 radios and the range of the phenomenon
to
√

2d2, as shown in Figure 8. Since we are using the Two-ray Ground radio
propagation model, nodes within this boundary always receive the broadcast
and nodes outside never receive the broadcast.5

12 13 14 15

18 19 20

22 23 24 25

17

1098

2 3 4 5

7

11

16

21

1

6

d

d

Fig. 8. This figure illustrates the maximum broadcast range used in our case study. If
we use the Two-ray Ground radio propagation model, then node 13 can never broadcast
further than the ideal circle with radius

√
2d2

We will excite the network with a single phenomenon node that slowly travels
near the perimeter of the network. As the grid density increases, the phenomenon
will encounter sensor nodes more frequently. Thus, as the grid density increases,
AODV will flood more route requests through the network. As the network
becomes more congested, we should observe higher latency and higher loss rates
in sensor reports delivered to the stationary data collection point. See Figures
9, 10, and 11 for latency, data rate, and loss fraction statistics.

This experiment’s purpose as a proof of concept for our ns-2 extensions is
complete. We have captured details of the AODV routing protocol through mul-
tiple sensor network simulations, and those results follow our expectations. A
more useful result would involve classifying AODV as better or worse than some
other routing protocol, but this work is left for future research. As it stands, we

5 In reality, this boundary is a random variable due to complex fading and interference
effects.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 500 1000 1500 2000

La
te

nc
y

(s
ec

)

Number of sensors in the network

Latency Statistics for Small to Large Sensor Networks

average latency
minimum latency
maximum latency

Fig. 9. Latency shown as a function of network size

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0 500 1000 1500 2000

R
at

e
(k

bp
s)

Number of sensors in the network

Rate Statistics for Small to Large Sensor Networks

average rate
maximum rate

Fig. 10. Data rates shown as a function of network size

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 500 1000 1500 2000

Lo
ss

 (n
um

be
r o

f l
os

t p
ac

ke
ts

 p
er

 2
0s

ec
 p

er
io

d)

Number of sensors in the network

Loss Statistics for Small to Large Sensor Networks

loss

Fig. 11. Loss fractions shown as a function of network size

have demonstrated AODV performance in large networks of up to 2000 sensors
excited by a mobile phenomenon. Reproducing the traffic patterns exhibited in
these simulations would be extremely difficult without using similar extensions
to ns-2.

7 Future Work

Much more effort should be made to improve how phenomenon emanates. Presently,
it follows the behavior of an 802.11 broadcast, configured with one of the follow-
ing radio propagation models:

1. Free Space Model
2. Two Ray Ground Model
3. Shadowing Model

The first two models represent the communication range as an ideal circle,
whose boundary is an absolute limit on signal range. The Shadowing model
applies a more probabilistic means of determining whether a receiver on the
boundary can receive the signal.

Using a radio propagation model to simulate anything other than electro-
magnetic wave propagation is probably unrealistic. So, the radio propagation
model should be extended to create various phenomenon propagation models

that could specifically address the characteristics of phenomena such as seismic
wave propagation or gas dispersion.

Our work to build a basic framework in ns-2 for triggering a network of
sensors with phenomena can leverage more direct research in sensor network-
ing protocols and techniques. Experiments in energy efficient routing [14] and
medium access control [9] will lend themselves well to this extended ns-2 envi-
ronment. Trade-offs between power optimizations and throughput optimizations
of communication protocols could be established in ns-2. Those characteristics
in various sensor management schemes [15] could be similarly examined.

Directional antennas can improve the capacity of an ad hoc network [16]. It
is also known that topologies can be configured to optimize energy efficient com-
munication [17]. Investigating the power saving benefits of dynamic topologies
partially controlled by directional antennas could be complemented by ns-2’s
support for energy constrained mobile nodes. Results of this research could be
tailored to sensor networks by exciting network traffic with mobile phenomena,
as we have included ns-2. Support for directional antennas in ns-2 has been
contributed by Young-Base Ko, et al [18].

Ns-2 offers great potential for mobile ad hoc sensor network research. MAC
protocols, routing protocols, and applications can be customized in as much
detail as their real-world counterparts. Throughput, latency, and energy levels
can be gleaned from simulation trace files for measuring network performance
and energy efficiency. With enough effort, anything is possible. Unfortunately, a
fluent familiarity with ns-2 can be a bear to achieve. It’s flexibility goes hand-in-
hand with a large and complicated architecture. Extending that architecture to
create new protocols or applications can be quite difficult and time-consuming.
Learning how to use its existing capabilities is easier, but still difficult. Any
effort to provide some more intuitive interface than Tcl based scripting to ns-2’s
capabilities would be extremely beneficial to its users.

7.1 Bugs

Phenomenon nodes receive broadcasts from other phenomenon nodes. This does
not seem to effect simulation results on the IP side of the network, but it does
make the simulations much longer and trace files much larger when multiple
phenomenon nodes are being used in close proximity.

8 Conclusion

The primary contribution of this research is an extended capability in ns-2 to
invoke network traffic consistent to the patterns expected for sensor networks.
Coordinating these unique traffic patterns in ns-2 without extensions similar to
ours would require very much effort for medium to large networks. Aside from
generally increasing the flexibility of ns-2, this work facilitates our objective to
evaluate how well current MANET routing protocols support the requirements
of various sensor network applications.

References

1. J. M. Kahn, R. H. Katz and K. S. J. Pister. “Mobile Networking for Smart Dust,”
in the ACM/IEEE International Conference on Mobile Computing and Networking
(MobiCom 99), Seattle, WA, August 1999.

2. µ-Adaptive Multi-domain Power aware Sensors at MIT.
http://www-mtl.mit.edu/research/icsystems/uamps/

3. Wireless Integrated Sensor Networks at UCLA.
http://www.janet.ucla.edu/WINS/

4. “H-MAS: A Heterogeneous, Mobile, Ad-hoc Sensor-Network Simulation Environ-
ment,” in the Seventh Annual Swarm Users/Researchers Conference, Notre Dame,
Indiana, April 2003.

5. Park, Savvides, Srivastava. “SensorSim: A Simulation Framework for Sensor Net-
works.”
http://nesl.ee.ucla.edu/projects/sensorsim/

6. The SWARM Development Group.
http://www.swarm.org

7. The Network Simulator - ns-2.
http://www.isi.edu/nsnam/ns/

8. NRL’s OLSR implementation for ns-2.
http://pf.itd.nrl.navy.mil/projects/olsr/

9. Wei Ye, John Heidemann, Deborah Estrin. “An Energy-Efficient MAC Protocol
for Wireless Sensor Networks,” in the Proceedings of the IEEE INFOCOM, 2002.

10. H. Yang, B. Sikdar. “A Protocol for Tracking Mobile Targets using Sensor Net-
works,” in the Proceedings of the First IEEE International Workshop on Sensor
Network Protocols and Applications, pp. 71-81, Anchorage, Alaska, May 2003.

11. The ns Manual.
http://www.isi.edu/nsnam/ns/ns-documentation.html

12. The Doxygen documentation system.
http://www.doxygen.org

13. NRL’s Sensor Network Extension to ns-2.
http://nrlsensorsim.pf.itd.nrl.navy.mil/

14. Ahmed Safwat, Hossam Hassanein, Hussein Mouftah. “Energy-Aware Routing in
MANETs: Analysis and Enhancements,” in the Proceedings of The Fifth ACM In-
ternational Workshop on Modeling, Analysis and Simulation of Wireless and Mo-
bile Systems in conjunction with ACM MobiCom 2002, Atlanta, Georgia, Septem-
ber 2002.

15. Deborah Estrin, Ramesh Govindan, John Heidemann, Satish Kumar. “Next Cen-
tury Challenges: Scalable Coordination in Sensor Networks,” in the Proceedings
of the Fifth Annual ACM/IEEE International Conference on Mobile Computing
and Networking, pp. 263-270, Seattle, Washington, August 1999.

16. Siuli Roy, Dola Saha, S. Bandyopadhyay, Tetsuro Ueda, Shinsuke Tanaka. “A
Network-Aware MAC and Routing Protocol for Effective Load Balancing in Ad
Hoc Wireless Networks with Directional Antenna,” in the Proceedings of the
Fourth ACM International Symposium on Mobile Ad Hoc Networking and Com-
puting, pp. 88-97, Annapolis, Maryland, June 2003.

17. Ayad Salhieh, Jennifer Weinmann, Manish Kochhal, Loren Schwiebert. “Power Ef-
ficient Topologies for Wireless Sensor Networks,” in the Proceedings of the Interna-
tional Conference on Parallel Processing, pp. 156-163, Valencia, Spain, September
2001.

18. Y. B. Ko, V. Shankarkumar, N. H. Vaidya. “Medium Access Control Protocols
Using Directional Antennas in Ad Hoc Networks,” in the Proceedings of the IEEE
INFOCOM 2000 - Volume 1, pp. 13-21, Tel-Aviv Israel, March 2000.

